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where the root set ¢, differs from the polynomial (18)
root set Z, in the p root transpositions Z, > 1/Z§ = 1.
By deforming the integration contour in (28) one may
express all the exp (— W,,, + ip,,,) as the sums of (p+1)
deductions in the integrand poles, the deduction at
infinity being equal to zero, and obtain the result

exp (— W, +ip,)
=exp[-W+ia(m—N-1)]

([0 B2t exp (i)

o (1=2F)[exp (—ia) — 2]

Ifklz_l

Z¥ exp (—ia)—1

m

k Zk

y [1 _i exp (;ima)

p

« H exp (—ia)— 3z fk—l/z"?‘]’

pexp (—ia)—1/ZF £ —%

where all the sums and products are taken over all
the transpositions executed.

As all the bicrystal root magnitudes |Z,] tend to 1,
the following expression for Debye-Waller factors
may be obtained to first order in 1—|Z;|:

exp(—W,,,)=exp(—W){1+2 Rei[gi(,;,.im—a2
k

Zk
X = 1-|Z] ]}
Z¥ exp (—ia)—1

Acta Cryst. (1988). Add, 33-37

References

AFANAS'EV, A. M., ALEKSANDROV, P. A, FANCHENKO, S. S,,
CHAPLANOV, V. A, & YAKIMOV, S. S. (1986). Acta Cryst. A42,
116-122.

AFANAS'EV, A. M., ALEKSANDROV, P. A. & ImMmAMOV, R. M.
(1986). Rentgenovskay Structurnay Diagnostica v Issledovanii
Pripoverchnostnich Sloyev Monocrystallov. Moscow: Nauka.

AFANAS’EV, A. M., ALEKSANDROV, P. A,, IMAMOV, R. M,,
Lomov, A. A. & ZAV'ALOVA, A. A. (1984). Acta Cryst. A40,
352-355.

AFANASEV, A, M. & FANCHENKO, S. S. (1986). Dokl. Akad.
Nauk SSSR, 287, 1395-1399.

AFANAS’EV, A. M., KOVALCHUCK, M. V,, KOVEV, E. K. & KOHN,
V. F. (1977). Phys. Status Solidi A, 42, 415-420.

AFANAS’EV, A. M., KOvALCHUCK, M. V,, LoBANOVICH, E. F.,
IMAMOV, R. M., ALEKSANDROV, P. A. & MELKONYAN, M. K.
(1981). Sov. Phys. Crystallogr. 26, 13-20.

AwANO, H., SPERIOSU, V. S. & WiLTs, C. H. (1984). J. Appl.
Phys. 55, 3043-3048.

BONSE, V., HART, M. & SCHWUTTKE, G. H. (1969). Phys. Status.
Solidi, 33, 361-366.

BURGEAT, J. & COLELLA, R. (1969). J. Appl. Phys. 40, 3505-3509.

BURGEAT, J. & TAUPIN, D. (1967). Acta Cryst. A24, 99-103.

EISENBERGER, A. M., ALEXANDRoprouLOs, N. G. &
PLATZMAN, P. M. (1972). Phys. Rev. Lest. 28, 1519-1525.

HALLIWELL, M. A. G., LyoNns, M. H. & HiLL, M. J. (1984). J.
Cryst. Growth, 68, 523-531.

KaMENOU, K., HIrAL L., Asama, K. & Sakal, M. (1979). J.
Appl. Phys. 34, 539-542.

QUILLEC, M., GOLDSTEIN, L., LE Roux, G., BURGEAT, J. &
PrRIMOT, J. (1984). J. Appl. Phys. 55, 2904-2909.

SPERIOSU, V. S., GLASS, H. L. & KoBayasH1, T. (1979). Appl
Phys. Lett. 34, 539-542.

TAKAGIH, S. (1962). Acta Cryst. 15, 1311-1316.

TAUPIN, D. (1964). Bull. Soc. Fr. Minéral. Crystallogr. 87, 469-475.

YAakiMov, S. S., CHAPLANOV, V. A, AFANASEV, A. M,
ALEKSANDROV, P. A., IMAMOV, R. M. & LoMov, A. A. (1984).
Pis’ma Zh. Eksp. Teor. Fiz. 39, 3-5.

Yoal, K., MivyaAMOTO, N. & NISHIZAVA, J. (1970). J. Appl. Phys.
9, 246-250.

ZAV'ALOVA, A. A, Imamov, R. M., Lomov, A. A,
MARGUSCHEV, Z. C. & MAsLOV, A. V. (1987). Krystallografiya.
In the press.

The Statistical Significance of Difference Densities
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Abstract

The statistical properties of a difference density 4p
are not fully characterized by the standard deviation
o(4p), which relates to the density at a point. That
is not sufficient information to assess the significance
accurately for the density within a finite volume. The
reliability of a complete Ap map may be determined

0108-7673/88/010033-05303.00

by applying standard statistical tests to the chi-square
index

X’ =Y o (s)[AF(s)]?

from a least-squares refinement, where AF is a struc-
ture-factor residual and o’ is the variance in the
structure factor, or equivalently to the goodness-of-fit
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34 THE STATISTICAL SIGNIFICANCE OF DIFFERENCE DENSITIES

index [(x*/v—1)/2]"?, where v is the number of
degrees of freedom in the structure refinement. A
similar treatment applies to component volumes or
features in the difference density for which the chi-
square index is

X =Y 0.} (s)[AF.(9)T,

where AF, is obtained by Fourier transformation
from the nth component of Ap and o2 is the variance
rescaled by the fraction of the cell volume occupied
by the feature.

Significance and o*(Ap)

In scattering experiments we probe the structure of
matter. The measurements are of limited value
without reliable estimates of their precision. This is
equally true for discrete quantities derived from the
measurements, such as interatomic distances, which
can be compared using significance criteria derived
by standard methods. It also applies to the images of
scattering density p(r) obtained by inverse Fourier
transformation from the phased scattering ampli-
tudes. For scattering from a crystal that transform is
the summation

p(r)= V'Y exp (=2mis.r)F(s) (1

where V is the unit-cell volume and F(s) is the
structure factor.

It is more convenient to study the difference
density, ideally obtained by subtracting from the exact
p(r) the density p.(r) for a reference model resem-
bling the true structure, but in practice obtained by
evaluating

Ap(r)= V™'Y exp (—2wis.r)AF(s)

where
AF(s) = F,(s) — F.(s). (2)

F,(s) is the measured structure factor, and the
summation ranges over the finite set for these struc-
ture factors. F.(s) is the corresponding structure
factor for the reference model.

We confine our attention to centrosymmetric struc-
tures and assume that in a scattering experiment the
phases of the structure factors are known exactly.
The errors in the measured structure factors 8F(s)
are assumed to be normally distributed about zero
with variance o (s). The reference model for p.(r) is
also treated as exact and the difference density is
analysed on that basis. That is, if all the §F(s) were
zero the difference density would be a representation,
correct at that resolution, of the difference between
the true scattering density and that of the particular
reference model. The covariance terms for the
structure factors are neglected.

When analysing scattering experiments it is often
desirable to consider Ap as containing a set of
components {Ap,},-, ~ such that

N
Ap=Y Ap,. (3)
n=1

A component might be due to an error in a nuclear
position, for example, or to the neglect of anharmon-
icity in the thermal motion of a particular atom. The
objective when analysing difference densities is to
differentiate such components from the effects of
errors in the measured structure factors. Significance
tests can assist that analysis by identifying parts of
the difterence density which cannot reasonably be
attributed to noise in the structure factors. Sig-
nificance here has its standard meaning in statistical
inference, namely the result of testing whether the
quantity (the difference density) could have arisen by
chance from the random errors in the measurements
[ie the 8F(s)].

The variance at a point in the difference density
can be derived as in equation (17) of Rees (1977)
which reduces to

2
o*(Ap) = ) [2 V'Y cos (27s;, . r)] oi(s) (4)

where the first sum is over the independent reflections
and the second is over the symmetry equivalents in
one hemisphere. Unless r is near a special position,
or the number of structure factors is small, the term
in brackets may be approximated by replacing the
square of each cosine function by its effective mean
value of 3 without serious loss of accuracy.

The maximum |4p| within a component is often
regarded as indicating its level of significance. The
maximum of the ratio |4p|/o(4p) is treated as if it
were equivalent to the ratio |Ax|/o(x) for the one-
dimensional random variable x, which is the square
root of minus twice the argument for the exponential
term in a Gaussian probability function. However it
is not obvious how to determine the significance of
components accurately from |Ap|/o(4p) because it
is an estimate based on one point only.

Accurate assessment of the significance of a finite
volume of difference density Ap in real space is
especially difficult because of the mathematical com-
plexity arising from the covariance and higher-order
correlation terms. Because of the equivalence between
real- and reciprocal-space representations, however,
the statistical significance of a probability function is
not altered by a Fourier transformation (Cramér,
1946). The significance of the complete Ap measure-
ment in real space is identical to that of the corre-
sponding set of structure-factor differences {AF(s)}
in reciprocal space. The latter is much simpler to
evaluate because the set of structure factors is discrete.
In practical applications the set of structure factors
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is also finite. Furthermore, when the structure factors
are determined from independently measured
intensities, the covariance and higher-order correla-
tion terms are negligible for most purposes.

The significance of the set {AF(s)} can be related
to chi-square indices, which are conveniently calcu-
lated during least-squares refinement of a crystal
structure. The sample estimate of the chi-square index
is

x*=Y o (s)[AF(s)]~ (5)
The probability function for x* (Cramér, 1946) is

P(x*, v)=(x*/2)""""exp (-x*/2)/2T(v/2), (6)

where », the number of degrees of freedom, is the
number of independent reflections minus the number
of variable parameters in a least-squares refinement.

The probability that the chi-square index exceeds
a given value by chance is listed as a function of »
by Cramér (1946) in his Table 3. The probability that
the reduced chi-square index, xy’/ v, exceeds a given
value by chance is listed in his Table C-4 by Bevington
(1969).

The chi-square index with » degrees of freedom is
asymptotically normal, with a mean value v and
variance 2v, for v large (Cramér, 1946), in which case
(6) becomes

P(x? v)=[1/(4mv)*Texp [ (x>~ »)/4v]. (6a)

The probability that x> exceeds » by more than
A(2v)"? by chance is listed in his Table 2 by Cramér
(1946). The number of degrees of freedom in most
crystallographic experiments is large enough for the
asymptotic form (6a) to apply. On the other hand,
the derivation of the probability functions [(6) and
(6a)] assumes that the residuals are linear functions
of the parameters, which only holds approximately
in practice. Within the limits of that approximation
the significance of difference densities can be assessed
by applying standard methods of inference to normal
distributions.

Significance of components

We now extend the reasoning of the previous section
to the components Ap,. For simplicity we first con-
sider the case where the components divide the cell
into a finite set of non-overlapping fragments
{Va}n=1,~. Corresponding to (3) in real space we have
in reciprocal space

AF=Y AF, (7)

where AF, is related to Ap, by the Fourier trans-

formation
AF, = I Ap, exp 2mis.r) dr
v

= | Ap, exp 2mis.r) dr
Va

= | Ap exp (2mis.r) dz. (8)
Va

V denotes integration over the full cell. The alternative
forms are valid because Ap, vanishes outside V..

The significance of the set of component structure-
factor differences {AF,(s)},-, n is given by standard
statistical tests applied to the chi-square indices for
the component

Xn=Y 0,2(s)(AF,)’ 9)

where AF, is defined in (8) and ¢ is the dispersion
of the probability function for the error in AF,. Since
AF, can be calculated from Ap, by a numerical Four-
ier transformation, the chi-square index can be evalu-
ated provided o(s) can be determined.

The errors in the structure factors {8F(s)} may be
expressed in terms of a real-space error function 8p(r)
such that

8F(s)= | 8p(r) exp 2mis.r) dr

™Mz

| 8p(r) exp 2mis.r) dr
1V,

n

(10)

™Mz

8F,(s),
n=1
which defines &F,(s). The variance o3(s) is the
dispersion of the probability function for 8F,(s).

As the structure is centrosymmetric, elements of V,,
in (10) can be combined so that the geometrical term
exp (2is . r) reduces to a cosine function. The disper-
sion of the function 8p(r) is uniform through the cell
except for modest increases (up to a factor of two)
near a special position, and its sign fluctuates ran-
domly over distances greater than the resolution.
Similar comments apply to the cosine multiplier. A
preliminary hypothesis is that the integrals in (10)
can be recast as finite sums satisfying the central limit
theorem (Cramér 1946), and thus the 6F,(s) have a
normal distribution.

We denote the volume of the fragment V, by V,.
It is helpful to begin with the case where V/V, is
independent of n, i.e. V, is V/ N for all components.
If our preliminary hypothesis is satisfied the 8F, com-
bine to form 8F as do the steps in a random walk
(Reif, 1965), in which case

ai(s)= N7 'a%(s). - (11)

If one relaxes the restriction on V, to V, <V, (11)
becomes

o(8)=(V,/ V)o'(s) (12)
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so that the chi-square index for the nth component is
x2=(V/ V)X o Xs)(AF,), (13)

from which the significance of the nth component
may be calculated by standard methods.

The derivation of (11) is suspect if the component
volumes are small compared with the resolution, in
which case the 8F, from neighbouring volumes may
be positively correlated, rather than randomly related.
Similar difficulties arise if subdivision of the
difference density is extended to overlapping frag-
ments, with Ap partitioned using non-negative
weighting factors in the overlapping region. The con-
tributions of overlapping fragments will again be
positively correlated.

The consequences are indicated by examining the
extreme case in which all the 8F, are identical and
so add in phase. In (11) the multiplier N ' is replaced
by N2 and the multiplier (V/V,) in (13) becomes
(V/V,)> Thus if the AF, are positively correlated the
true chi-square is greater than that given by (13). The
use of (13) as an index thus sets a lower limit to the
level of significance. The deficiencies of this method
are fail safe, and it is unlikely that they will be serious
in practical situations.

Nevertheless, a word of caution may be appropri-
ate. This argument breaks down if 4p is partitioncd
with negative weights so that a volume element makes
a contribution which is negative to one component,
and positive to another. Such use of negative weights
in partitioning 4p could result in negative correlation.

The chi-square indices predicted by (13) for nega-
tively correlated components would be too large.

Example

The properties of the foregoing theory may be illus-
trated by applying it to a test case, namely silicon.
The difterence densities shown in Fig. 1 were derived
from experimental structure factors measured by
Teworte & Bonse (1984), supplemented by the 222
reflection of Alkire, Yelon & Schneider (1982). The
data, which are on an absolute scale, include all ten
independent reflections with |s|=(2sin 8)/A <
1-06 A~', and seven more structure factors with
1-:06<|s|<2:10 A"

The calculated structure factors were based on the
isolated atom model evaluated using atomic scatter-
ing factors, derived from the wave functions of
Clementi (1965), and the dispersion measurements
of Deutsch & Hart (1985), and were corrected for
Thomson scattering from the nucleus. The tem-
perature factor coefficient B was fixed at 0-464 A2,
as determined from an earlier multipole refinement.

The difference density will contain, among other
real contributions, a component caused by an inac-
curacy in that value. The sections of the Ap and o(4p)
maps plotted in Fig. 1, which contain the mean posi-
tions for a pair of bonded silicon atoms, were evalu-
ated using the full data set (a and b) and the ten
reflections with [s|<1-06 A™' (¢ and d). The limited
range of contours in map (b) shows that O'Z(Ap) is

o o {5
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b A\

Bp, v B.025 eR7® ints ESD olfp,) + B.0085 eA® ints

(a) (6)

1

Ap, 1+ B8.025 eR® ints

(c) (d)

ESD clApz] 1 0.0005 oA3 ints

2

Fig. 1. Sections of density maps for silicon. (a) Ap for 17 reflections with |s|<2-10 A™". (b) o(4p) for map (a) with contours ranging
from 0-004 (dashed) to 0-005 e A~>. (c) Ap for ten reflections with |s| < 1-06 AL (d) o (4p) for map (¢) with contours ranging from
0-003 (dashed) to 0-004 e A=, The mean positions for bonded silicon atoms are shown as crosses. The features discussed in the text

are labelled A and B in (a).
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Table 1. Probability data from difference densities for

silicon
Density 10 reflections 17 reflections
Term component (v=9) (v=16)

Whole map 35736 35767

X’ A 23534 23672

B 114020 114170
Whole map 44-5 33-4
[(x*/v-1)/21"* A 36-2 272
B 79-6 59-7
A 26-2 17-9
|4pl/o(4p) B 546 197

approximately uniform even though there are only
17 independent structure factors. Since the B value
is the only free parameter in the model there are 16
and nine degrees of freedom for the full and low-angle
data sets respectively.

Chi-square indices were evaluated from the silicon
deformation densities plotted in Fig. 1 for (i) the
whole map, (ii) the negative feature, —0-06 ¢ A~ in
depth, 0-5 1& from the Si nucleus on the extrapolation
of the Si-Si bond, labelled A in Fig. 1(a), and (iii)
a positive feature 0-21 e A > high centred on the Si-Si
bond and labelled B in Fig. 1(a). Boundaries were
chosen to approximate the contours at —0-025 and
+0-025 e A~ for features A and B respectively. The
regions within the unit cell which are equivalent by
symmetry were included when calculating AF,, and
V.. In one unit cell there are 32 slightly overlapping
regions each with volume 0-82 A® for the negative
feature (A) and 16 repetitions, each with volume
1-63 A3 for the positive feature (B). The differences
in boundaries and probabilities on changing from the
truncated to the full data set were slight. The chi-
square indices are listed in Table 1.

The goodness-of-fit index [(x?/»—1)/2]"/2, which
is the square root of minus twice the argument of the
exponential factor in the probability function (6a),
is the analogue of the maximum |4Ap|/o(4p) used as
a point estimate of significance. Both values are
included in Table 1. [(x*/v—1)/2]"? is larger, as
expected, since the probability term is obtained by
integration over a volume which is large compared
to the resolution, whereas the maximum of
|4p|/ o (Ap) relates to a single point.

The results in Table 1 emphasize another aspect of
significance tests applied to difference densities. The

maximum value of |Ap|/o(4p) within feature A
decreases from 26-2 in the low-angle map (c) to 17-9
in the full-angle map (a). There are analogous
decreases in magnitude of the arguments for the other
probability functions. It is axiomatic that adding
information which is not inconsistent with an initial
set of data cannot reduce its significance. The proba-
bility functions corresponding to the arguments in
the third and fourth columns of Table 1 are not
different approximations to the same quantity. The
significance levels derived from them apply to the
respective 10 to 17 reflection images explicitly. The
10-reflection map contains almost all the useful infor-
mation. The significance levels for the 17-reflection
map relate, not just to the general appearance of the
features, but also to how well the fine structure associ-
ated with the high-angle reflections is described.

In so far as valence scattering is a low-Bragg-angle
phenomenon, the significance tests from extensive
data sets may yield inaccurate estimates of the relia-
bility of features associated with the valence density.
This applies particularly to estimates based on the
maximum |4p|/o(Ap) ratio. For sharp features domi-
nated by high-angle data, such as those due to thermal
anharmonicity, the significance estimates based on
that ratio may be useful. Where a component has
dimensions much larger than the resolution, however,
the single-point estimate will be inaccurate, in the
same way that the 17-reflection value of |Ap|/o(Ap)
is a poor a})proximation to the 10-reflection
[(x?/v—1)/2]1"2 value.

This work was supported by the Australian
Research Grants Scheme.

References

ALKIRE, R. W., YELON, W. B. & SCHNEIDER, J. R. (1982). Phys.
Rev. B, 26, 3097-3104.

BEVINGTON, P. R. (1969). Data Reduction and Error Analysis for
the Physical Sciences. New York: McGraw-Hill.

CLEMENT], E. (1965). IBM J. Res. Dev. 9, Supplement 2.

CRAMER, H. (1946). Mathematical Methods of Statistics. Princeton
Univ. Press.

DEUTSCH, M. & HART, M. (1985). Acta Cryst. A41, 48-55.

REEs, B. (1977). Isr. J. Chem. 16, 180-186.

REIF, F. (1965). Fundamentals of Statistical and Thermal Physics,
pp- 25-40. New York: McGraw-Hill.

TEWORTE, R. & BONSE, U. (1984). Phys. Rev. B, 29, 2102-2108.



38

Acta Cryst. (1988). Ad4, 38-45

Application of the Molecular Replacement Method to Multidomain Proteins. 1.
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Abstract

Multidomain proteins provide special problems in
the application of the molecular replacement method
of structure determination. The structure of the Fab
fragment from the autoimmune poly(dT)-specific
antibody HEDI10 has been determined using
molecular replacement. An analysis of the effects of
varying the model and the parameters used in the
rotation function indicates that dividing the molecule
into individual relatively rigid domains simplifies
interpretation of the results, and that the optimal
parameters depend on the molecule under study.

Introduction

The continually growing number of proteins whose
three-dimensional structures have been determined
increases the possibility that a new protein being
investigated will have some features in common with
one or more of the known structures. In addition,
there is growing interest among biochemists and pro-
tein crystallographers in determining the changes in
protein folding and/or packing caused by specific
modifications of the amino-acid sequence. For these
cases the application of the standard multiple isomor-
phous replacement technique (Blundell & Johnson,
1976) to determine phases, while it will give the final
answer, may not be the fastest or most straightforward
way to achieve this goal. A more direct approach is
to utilize information from a closely related protein
of known structure by application of the molecular
replacement (MR) technique (Rossmann, 1972). If
successful, this approach can decrease dramatically
the time required to determine the protein structure
and can make heavy-atom derivatives unnecessary.
While the application of the MR method is computa-
tionally intensive, this is no longer an obstacle.

The task of positioning a model molecule in the
unit cell involves six degrees of freedom: three to
determine the orientation and three to determine the
translation of the molecule. From a theoretical analy-
sis of the properties of the Patterson function (Hoppe,
1957; Rossmann & Blow, 1962) it became obvious
that such a task can be reduced to two consecutive
three-dimensional problems. The first step is the

0108-7673/88/010038-08%03.00

determination of the correct orientation of the model
and the second is the determination of the position
of the correctly oriented model within the unit cell.
The orientation of the molecule is determined by the
comparison of the Patterson function of the unknown
crystal with that of the model molecule in all possible
orientations. The most widely used score function for
analyzing the similarity of Patterson functions is the
integral of their products over a volume around the
origin of the unit cell. Fast algorithms that can be
used to calculate this rotation function (RF) in both
direct (Huber, 1965; Steigemann, 1974) and
reciprocal (Crowther, 1972) space have been
developed and have been successfully applied.

Despite many years of experimenting with the RF
in a number of laboratories there is no clear under-
standing of the effect of various factors involved in
the calculations on the final success or failure of the
method. The current approach is to repeat the calcula-
tions many times, varying parameters that are con-
sidered important by the investigator.

There are numerous examples of successful appli-
cations of the MR method [e.g. lysozyme (Bott &
Sarma, 1976); insulin (Dodson, Harding, Hodgkin &
Rossmann, 1966); hemoglobin ( Derewenda, Dodson,
Dodson & Brzozowski, 1981); serine proteases
(Fujinaga, Read, Sielecki, Ardelt, Laskowski &
James, 1982; McPhalen, Svendsen, Jonassen & James,
1985); phospholipase A2 (Dijkstra, van Nes, Kalk,
Brandenburg, Hol & Drenth, 1982); immunoglobulin
pFc' fragment (Phizackerley, Wishner, Bryant,
Amzel, Lopez de Castro & Poljak, 1979); phycocyanin
(Schirmer, Huber, Schneider, Bode, Miller &
Hackert, 1986)] and some methodological and
practical aspects have been the subject of a special
symposium (Daresbury Study Weekend, 1985). The
procedure is relatively straightforward in the case of
a rigid molecule and success depends primarily on
how well the model approximates the unknown
protein.

Multidomain or multisubunit proteins that undergo
a conformational change upon ligand binding [e.g.
hemoglobin, hexokinase, arabinose binding protein,
citrate synthase, etc. (Huber & Bennett, 1983)] or that
are relatively flexible [e.g. immunoglobulins (Amzel
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