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where the root set t, differs from the polynomial (18) 
root set ~,, in the p root transpositions :~k -~ 1/~k* = tk. 
By deforming the integration contour in (28) one may 
express all the exp ( -  W,, + i~m) as the sums of ( p + 1 ) 
deductions in the integrand poles, the deduction at 
infinity being equal to zero, and obtain the result 

exp ( -  W m -~- i~m ) 

= exp [ -  W +  i a ( m  - N -  1)] 

P × I-[ (1 --.Zk) [___~1 -- z__.k*, ex___pp ( -  ia)_] 
k ( 1 - - f f * k ) [ e x p ( - - i a ) - - Z k ]  

× [1 _~-e~ exp ( - irna ) 

k 

I¢~1:-1 
£~ Z* exp ( - i a ) -  1 

" 1 x]--[ e x p ( - i a ) - Z ~  Zk.-I_/_._Z* 
t~kexp( - - ia ) - - l /~ /*  Z?k---~t J '  

where all the sums and products are taken over all 
the transpositions executed. 

As all the bicrystal root magnitudes [Zkl tend to 1, 
the following expression for Debye-Waller factors 
may be obtained to first order in 1--I~kl: 

exp (- W~)=exp (- W){ l + 2 Re ~, [ exp (-ima) 

]} 
Zk* exp ( - i a ) -  I " 
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Abstract 

The statistical properties of a difference density Ap 
are not fully characterized by the standard deviation 
cr(Ap), which relates to the density at a point. That 
is not sufficient information to assess the significance 
accurately for the density within a finite volume. The 
reliability of  a complete Ap map may be determined 
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by applying standard statistical tests to the chi-square 
index 

x 2:  E ~-2(s)[ AF(s)]2 
$ 

from a least-squares refinement, where AF is a struc- 
ture-factor residual and o "2 is the variance in the 
structure factor, or equivalently to the goodness-of-fit 
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34 THE STATISTICAL SIGNIFICANCE OF DIFFERENCE DENSITIES 

index [(XZ/U--1)/2] 1/2, where u is the number of 
degrees of freedom in the structure refinement. A 
similar treatment applies to component volumes or 
features in the difference density for which the chi- 
square index is 

x 2= E ~2(s)[aF.(s)] 2, 
s 

where AF, is obtained by Fourier transformation 
2 from the nth component of Ap and on is the variance 

rescaled by the fraction of the cell volume occupied 
by the feature. 

Significance and t r2(Ap) 

In scattering experiments we probe the structure of 
matter. The measurements are of limited value 
without reliable estimates of their precision. This is 
equally true for discrete quantities derived from the 
measurements, such as interatomic distances, which 
can be compared using significance criteria derived 
by standard methods. It also applies to the images of 
scattering density p(r) obtained by inverse Fourier 
transformation from the phased scattering ampli- 
tudes. For scattering from a crystal that transform is 
the summation 

p ( r ) =  V-lY, exp(-2~ris.r)F(s) (1) 
s 

where V is the unit-cell volume and F(s) is the 
structure factor. 

It is more convenient to study the difference 
density, ideally obtained by subtracting from the exact 
p(r) ~he density p~(r) for a reference model resem- 
bling the true structure, but in practice obtained by 
evaluating 

Ap(r) = V -~ Y, exp (-2~-is.  r)AF(s) 
s 

where 

AF(s)=Fo(s)-F~(s). (2) 

Fo(s) is the measured structure factor, and the 
summation ranges over the finite set for these struc- 
ture factors. F~(s) is the corresponding structure 
factor for the reference model. 

We confine our attention to centrosymmetric struc- 
tures and assume that in a scattering experiment the 
phases of the structure factors are known exactly. 
The errors in the measured structure factors 6F(s) 
are assumed to be normally distributed about zero 
with variance o2(s). The reference model for pc(r) is 
also treated as exact and the difference density is 
analysed on that basis. That is, if all the 8F(s) were 
zero the difference density would be a representation, 
correct at that resolution, of the difference between 
the true scattering density and that of the particular 
reference model. The covariance terms for the 
structure factors are neglected. 

When analysing scattering experiments it is often 
desirable to consider Ap as containing a set of 
components {Ap,,},,=I,N such that 

N 

~p= E Ap.. (3) 
n = l  

A component might be due to an error in a nuclear 
position, for example, or to the neglect of anharmon- 
icity in the thermal motion of a particular atom. The 
objective when analysing difference densities is to 
differentiate such components from the effects of 
errors in the measured structure factors. Significance 
tests can assist that analysis by identifying parts of 
the difference density which cannot reasonably be 
attributed to noise in the structure factors. Sig- 
nificance here has its standard meaning in statistical 
inference, namely the result of testing whether the 
quantity (the difference density) could have arisen by 
chance from the random errors in the measurements 
[i.e. the 6F(s)]. 

The variance at a point in the difference density 
can be derived as in equation (17) of Rees (1977) 
which reduces to 

t r2 (Ap)=~  2 V - ' ~ c o s ( 2 r r s , e . r )  cr2(s) (4) 
i • e 

where the first sum is over the independent reflections 
and the second is over the symmetry equivalents in 
one hemisphere. Unless r is near a special position, 
or the number of structure factors is small, the term 
in brackets may be approximated by replacing the 
square of each cosine function by its effective mean 
value of ½ without serious loss of accuracy. 

The maximum lap] within a component is often 
regarded as indicating its level of significance. The 
maximum of the ratio ]Apl/tr(Ap) is treated as if it 
were equivalent to the ratio ]Ax]/cr(x) for the one- 
dimensional random variable x, which is the square 
root of minus twice the argument for the exponential 
term in a Gaussian probability function. However it 
is not obvious how to determine the significance of 
components accurately from IAp]/tr(Ap) because it 
is an estimate based on one point only. 

Accurate assessment of the significance of a finite 
volume of difference density Ap in real space is 
especially difficult because of the mathematical com- 
plexity arising from the covariance and higher-order 
correlation terms. Because of the equivalence between 
real- and reciprocal-space representations, however, 
the statistical significance of a probability function is 
not altered by a Fourier transformation (Cram6r, 
1946). The significance of the complete Ap measure- 
ment in real space is identical to that of the corre- 
sponding set of structure-factor differences {AF(s)} 
in reciprocal space. The latter is much simpler to 
evaluate because the set of structure factors is discrete. 
In practical applications the set of structure factors 



E. N. MASLEN 35 

is also finite. Furthermore, when the structure factors 
are determined from independently measured 
intensities, the covariance and higher-order correla- 
tion terms are negligible for most purposes. 

The significance of the set {AF(s)} can be related 
to chi-square indices, which are conveniently calcu- 
lated during least-squares refinement of a crystal 
structure. The sample estimate of the chi-square index 
is 

x~=E o-~(s)[/iF(s)] ~. (5) 
s 

The probability function for X 2 (Cram6r, 1946) is 

P(X 2, v)=(X2/2) ~'/2-~ exp(-x2/2) /2F(v/2) ,  (6) 

where v, the number of degrees of freedom, is the 
number of independent reflections minus the number 
of variable parameters in a least-squares refinement. 

The probability that the chi-square index exceeds 
a given value by chance is listed as a function of v 
by Cram6r (1946) in his Table 3. The probability that 
the reduced chi-square index, X2/v, exceeds a given 
value by chance is listed in his Table C-4 by Bevington 
(1969). 

The chi-square index with v degrees of freedom is 
asymptotically normal, with a mean value v and 
variance 2v, for v large (Cram6r, 1946), in which case 
(6) becomes 

P(X 2, v)={1/(4zrv) '/2] exp {-(X 2 -  v)/4v]. (6a) 

The probability that X 2 exceeds v by more than 
A (2 v)1/2 by chance is listed in his Table 2 by Cram& 
(1946). The number of degrees of freedom in most 
crystallographic experiments is large enough for the 
asymptotic form (6a) to apply. On the other hand, 
the derivation of the probability functions [(6) and 
(6a)] assumes that the residuals are linear functions 
of the parameters, which only holds approximately 
in practice. Within the limits of that approximation 
the significance of difference densities can be assessed 
by applying standard methods of inference to normal 
distributions. 

Significance of components 

We now extend the reasoning of the previous section 
to the components Ap,. For simplicity we first con- 
sider the case where the components divide the cell 
into a finite set of non-overlapping fragments 
{ V,},=m,N. Corresponding to (3) in real space we have 
in reciprocal space 

N 

A F =  y. AF,, (7) 
n = l  

where AF, is related to Ap, by the Fourier trans- 

formation 

AF,, = [. Ap,, exp (27ris. r) d r  
V 

= [ A p ,  exp (2rds.  r) d r  
Vn 

= j" Ap exp (2zris. r) dr. (8) 
Vn 

V denotes integration over the full cell. The alternative 
forms are valid because Ap,, vanishes outside V,,. 

The significance of the set of component structure- 
factor differences {AF,(s)},= wv is given by standard 
statistical tests applied to the chi-square indices for 
the component 

X~ -- E cr~E(s)(AF,) 2 (9) 
s 

2 where AF,, is defined in (8) and or, is the dispersion 
of the probability function for the error in / iF , .  Since 
AF, can be calculated from Ap, by a numerical Four- 
ier transformation, the chi-square index can be evalu- 
ated provided o'S(s) can be determined. 

The errors in the structure factors {~F(s)} may be 
expressed in terms of a real-space error function ~p (r) 
such that 

6F(s) = j" 6p(r) exp (2rris. r) d r  
V 

N 

= ~ j" 8p(r) exp (2Tris. r) d r  
n = l  V n 

N 

= E 6F,(s), (10) 
n = l  

which defines 6F,,(s). The variance cry(s) is the 
dispersion of the probability function for 8F,(s). 

As the structure is centrosymmetric, elements of V,, 
in (10) can be combined so that the geometrical term 
exp (27ris. r) reduces to a cosine function. The disper- 
sion of the function 6p(r) is uniform through the cell 
except for modest increases (up to a factor of two) 
near a special position, and its sign fluctuates ran- 
domly over distances greater than the resolution. 
Similar comments apply to the cosine multiplier. A 
preliminary hypothesis is that the integrals in (10) 
can be recast as finite sums satisfying the central limit 
theorem (Cram6r 1946), and thus the 6F,(s) have a 
normal distribution. 

We denote the volume of the fragment Vn by V,,. 
It is helpful to begin with the case where V~ Vn is 
independent of n, i.e. V,, is V / N  for all components. 
If our preliminary hypothesis is satisfied the 6F,, com- 
bine to form 6F as do the steps in a random walk 
(Reif, 1965), in which case 

o-~ (s) = N- I  cr2(s). (11) 

If one relaxes the restriction on V, to Vn < V, (11) 
becomes 

O'2n(S)  = ( V n / V ) o ' E ( s )  (12) 
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so that the chi-square index for the nth component is 

X2n=(V/Vn) ~. o r - 2 ( s ) ( A F n )  2, (13) 
N 

from which the significance of the nth component 
may be calculated by standard methods. 

The derivation of (11) is suspect if the component 
volumes are small compared with the resolution, in 
which case the 3F, from neighbouring volumes may 
be positively correlated, rather than randomly related. 
Similar difficulties arise if subdivision of the 
difference density is extended to overlapping frag- 
ments, with Ap partitioned using non-negative 
weighting factors in the overlapping region. The con- 
tributions of overlapping fragments will again be 
positively correlated. 

The consequences are indicated by examining the 
extreme case in which all the 3F, are identical and 
so add in phase. In (11) the multiplier N -~ is replaced 
by N -2 and the multiplier ( V / V ~ )  in (13) becomes 
( V~ V,,) 2. Thus if the AF~ are positively correlated the 
true chi-square is greater than that given by (13). The 
use of (13) as an index thus sets a lower limit  to the 
level of significance. The deficiencies of this method 
are fail safe, and it is unlikely that they will be serious 
in practical situations. 

Nevertheless, a word of caution may be appropri- 
ate. This argument breaks down if Ap is partitioncd 
with negative weights so that a volume element makes 
a contribution which is negative to one component,  
and positive to another. Such use of negative weights 
in partitioning Ap could result in negative correlation. 

The chi-square indices predicted by (13) for nega- 
tively correlated components would be too large. 

Example 
The properties of the foregoing theory may be illus- 
trated by applying it to a test case, namely silicon. 
The difference densities shown in Fig. 1 were derived 
from experimental structure factors measured by 
Teworte & Bonse (1984), supplemented by the 222 
reflection of Alkire, Yelon & Schneider (1982). The 
data, which are on an absolute scale, include all ten 
independent reflections with I s l = ( 2 s i n  O)/h < 
l ' 0 6 A  -~, and seven more structure factors with 
1"06 < Isl < 2 10 ~ - I .  

The calculated structure factors were based on the 
isolated atom model evaluated using atomic scatter- 
ing factors, derived from the wave functions of 
Clementi (1965), and the dispersion measurements 
of Deutsch & Hart (1985), and were corrected for 
Thomson scattering from the nucleus. The tem- 
perature factor coefficient B was fixed at 0 .464 /~ ,  
as determined from an earlier multipole refinement. 

The difference density will contain, among other 
real contributions, a component caused by an inac- 
curacy in that value. The sections of the Ap and o-(Ap) 
maps plottcd in Fig. 1, which contain the mean posi- 
tions for a pair of bonded silicon atoms, were evalu- 
ated using the full data set (a and b) and the ten 
reflections with Is[< 1.06 ,~-~ (c and d). The limited 
range of contours in map (b) shows that (r2(Ap) is 

,"1 
--., ( ) . ._ -_ . , ' : : - (  
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" "! "'" ( ' A ' . ,  , )  I 
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Fig. 1. Sections of density maps for silicon. (a) Ap for 17 reflections with Is[ < 2.10 ]k -~. (b) or(Ap) for map (a) with contours ranging 
from 0.004 (dashed) to 0.005 e ~-3. (c) zip for ten reflections with [s[ < 1.06 ,&-l. (d) or(zip) for map (c) with contours ranging from 
0.003 (dashed) to 0.004 e A-3. The mean positions for bonded silicon atoms are shown as crosses. The features discussed in the text 
are labelled A and B in (a). 
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Table 1. Probability data f rom difference densities for  
silicon 

Density 10 reflections 17 reflections 
Term component (u=9) (u= 16) 

Whole map 35 736 35 767 
g 2 A 23 534 23 672 

B 114020 114 170 
Whole map 44.5 33.4 

[(X2/v- 1)/2]1/2 A 36"2 27.2 
B 79-6 59.7 

iApl/~(~p) A 26"2 17"9 
B 54"6 39"7 

approximately uniform even though there are only 
17 independent structure factors. Since the B value 
is the only free parameter in the model there are 16 
and nine degrees of freedom for the full and low-angle 
data sets respectively. 

Chi-square indices were evaluated from the silicon 
deformation densities plotted in Fig. 1 for (i) the 
whole map, (ii) the negative feature, -0.06 e A -3 in 
depth, 0.5 A from the Si nucleus on the extrapolation 
of the Si-Si bond, labelled A in Fig. l (a) ,  and (iii) 
a positive feature 0.21 e A-3 high centred on the Si-Si 
bond and labelled B in Fig. l(a).  Boundaries were 
chosen t~ approximate the contours at -0.025 and 
+0.025 e A  3- for features A and B respectively. The 
regions within the unit cell which are equivalent by 
symmetry were included when calculating AF,, and 
V,. In one unit cell there are 32 slightly overlapping 
regions each with volume 0.82 A3 for the negative 
feature (A) and 16 repetitions, each with volume 
1.63 A3 for the positive feature (B). The differences 
in boundaries and probabilities on changing from the 
truncated to the full data set were slight. The chi- 
square indices are listed in Table 1. 

The goodness-of-fit index [ (X2/v-  1)/2] n/2, which 
is the square root of minus twice the argument of the 
exponential factor in the probability function (6a), 
is the analogue of the maximum [Ap]/cr(Ap) used as 
a point estimate of significance. Both values are 
included in Table 1. [ (X2 /~ , -1 ) /2 ]  1/2 is larger, as 
expected, since the probability term is obtained by 
integration over a volume which is large compared 
to the resolution, whereas the maximum of 
[Apl/cr(Ap) relates to a single point. 

The results in Table 1 emphasize another aspect of 
significance tests applied to difference densities. The 

maximum value of [dp[/cr(Ap) within feature A 
decreases from 26.2 in the low-angle map (c) to 17.9 
in the full-angle map (a). There are analogous 
decreases in magnitude of the arguments for the other 
probability functions. It is axiomatic that adding 
information which is not inconsistent with an initial 
set of data cannot reduce its significance. The proba- 
bility functions corresponding to the arguments in 
the third and fourth columns of Table 1 are not 
different approximations to the same quantity. The 
significance levels derived from them apply to the 
respective 10 to 17 reflection images explicitly. The 
10-reflection map contains almost all the useful infor- 
mation. The significance levels for the 17-reflection 
map relate, not just to the general appearance of the 
features, but also to how well the fine structure associ- 
ated with the high-angle reflections is described. 

In so far as valence scattering is a low-Bragg-angle 
phenomenon, the significance tests from extensive 
data sets may yield inaccurate estimates of the relia- 
bility of features associated with the valence density. 
This applies particularly to estimates based on the 
maximum A p / c r ( A p )  ratio. For sharp features domi- 
nated by high-angle data, such as those due to thermal 
anharmonicity, the significance estimates based on 
that ratio may be useful. Where a component has 
dimensions much larger than the resolution, however, 
the single-point estimate will be inaccurate, in the 
same way that the 17-reflection value of [Ap]/or(Ap) 
is a poor approximation to the 10-reflection 
[(X2/~ ' -  1)/2] 1/2 value. 

This work was supported by the Australian 
Research Grants Scheme. 
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Abstract 

Multidomain proteins provide special problems in 
the application of the molecular replacement method 
of structure determination. The structure of the Fab 
fragment from the autoimmune poly(dT)-specific 
antibody HED10 has been determined using 
molecular replacement. An analysis of the effects of 
varying the model and the parameters used in the 
rotation function indicates that dividing the molecule 
into individual relatively rigid domains simplifies 
interpretation of the results, and that the optimal 
parameters depend on the molecule under study. 

Introduction 

The continually growing number of proteins whose 
three-dimensional structures have been determined 
increases the possibility that a new protein being 
investigated will have some features in common with 
one or more of the known structures. In addition, 
there is growing interest among biochemists and pro- 
tein crystallographers in determining the changes in 
protein folding and/or  packing caused by specific 
modifications of the amino-acid sequence. For these 
cases the application of the standard multiple isomor- 
phous replacement technique (Blundell & Johnson, 
1976) to determine phases, while it will give the final 
answer, may not be the fastest or most straightforward 
way to achieve this goal. A more direct approach is 
to utilize information from a closely related protein 
of known structure by application of the molecular 
replacement (MR) technique (Rossmann, 1972). If 
successful, this approach can decrease dramatically 
the time required to determine the protein structure 
and can make heavy-atom derivatives unnecessary. 
While the application of the MR method is computa- 
tionally intensive, this is no longer an obstacle. 

The task of positioning a model molecule in the 
unit cell involves six degrees of freedom: three to 
determine the orientation and three to determine the 
translation of the molecule. From a theoretical analy- 
sis of the properties of the Patterson function (Hoppe, 
1957; Rossmann & Blow, 1962) it became obvious 
that such a task can be reduced to two consecutive 
three-dimensional problems. The first step is the 
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determination of the correct orientation of the model 
and the second is the determination of the position 
of the correctly oriented model within the unit cell. 
The orientation of the molecule is determined by the 
comparison of the Patterson function of the unknown 
crystal with that of the model molecule in all possible 
orientations. The most widely used score function for 
analyzing the similarity of Patterson functions is the 
integral of their products over a volume around the 
origin of the unit cell. Fast algorithms that can be 
used to calculate this rotation function (RF) in both 
direct (Huber, 1965; Steigemann, 1974) and 
reciprocal (Crowther, 1972) space have been 
developed and have been successfully applied. 

Despite many years of experimenting with the RF 
in a number of laboratories there is no clear under- 
standing of the effect of various factors involved in 
the calculations on the final success or failure of the 
method. The current approach is to repeat the calcula- 
tions many times, varying parameters that are con- 
sidered important by the investigator. 

There are numerous examples of successful appli- 
cations of the MR method [e.g. lysozyme (Bott & 
Sarma, 1976); insulin (Dodson, Harding, Hodgkin & 
Rossmann, 1966); hemoglobin (Derewenda, Dodson, 
Dodson & Brzozowski, 1981); serine proteases 
(Fujinaga, Read, Sielecki, Ardelt, Laskowski & 
James, 1982; McPhalen, Svendsen, Jonassen & James, 
1985); phospholipase A2 (Dijkstra, van Nes, Kalk, 
Brandenburg, Hol & Drenth, 1982); immunoglobulin 
pFc' fragment (Phizackerley, Wishner, Bryant, 
Amzel, Lopez de Castro & Poljak, 1979); phycocyanin 
(Schirmer, Huber, Schneider, Bode, Miller & 
Hackert, 1986)] and some methodolosical and 
practical aspects have been the subject of a special 
symposium (Daresbury Study Weekend, 1985). The 
procedure is relatively straightforward in the case of 
a rigid molecule and success depends primarily on 
how well the model approximates the unknown 
protein. 

Multidomain or multisubunit proteins that undergo 
a conformational change upon ligand binding [e.g. 
hemoglobin, hexokinase, arabinose binding protein, 
citrate synthase, etc. (Huber & Bennett, 1983)] or that 
are relatively flexible [e.g. immunoglobulins (Amzel 
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